

4th Year B. Tech. Computer Engineering

P P Savani University

School of Engineering Department of Computer Engineering

Effective From: 2020-21 Authored by: P P Savani University

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR FOURTH YEAR B.TECH. COMPUTER ENGINEERING PROGRAMME

				Teaching Scheme					Examination Scheme						
Sem	Course Code	Course Title	Offered By	Contact Hours				Cradit	Theory		Practical		Tutorial		Total
				Theory	Practical	Tutorial	Total	creuit	CE	ESE	CE	ESE	CE	ESE	Total
	SECE4013	System Software	CE	3	2	0	5	4	40	60	20	30	0	0	150
	SECE4022	Cloud Computing & Applications	CE	3	2	0	5	4	40	60	20	30	0	0	150
	SECE4031	Internet of Things	CE	2	4	0	6	4	40	60	40	60	0	0	200
_	SECE4042	Artificial Intelligence	CE	3	2	0	5	4	40	60	20	30	0	0	150
7	SECE4920	Major Project	CE	3		3	3	0	0	100	100	0	0	200	
	SEPD4010	Creativity, Problem Solving & Innovation	SEPD	3	0	0	3	3	40	60	0	0	0	0	100
	SECE4910	Summer Internship / Project 4 Weeks	CE		5		0	0	0	5	0	0	100	100	0
		Elective-III		2	2	0	4	3	40	60	20	30	0	0	150
8	SECE4930	Project	CE		25		25	25	0	0	400	600	0	0	1000

	P P SAVANI UNIVERSITY														
	SCHOOL OF ENGINEERING														
	TEACHING & EXAMINATION SCHEME FOR FOURTH YEAR B.TECH. COMPUTER ENGINEERING PROGRAMME (ELECTIVE COURSES)														
	Course Department Elective Code Course Title			Teach	ing Schem	e		Examination Scheme							
Sem		Department Elective Course Title	Offered By		Contact	Hours		Cradit	Th	Theory		Practical		orial	Total
				Theory	Practical	Tutorial	Total	creuit	CE	ESE	CE	ESE	CE	ESE	Total
	SECE4523	Machine Learning	CE	2	2	0	4	3	40	60	20	30	0	0	150
	SECE4530	Research Methodology	CE	2	0	1	3	3	40	60	0	0	50	0	150
7	SEIT4512	Information Security	IT	2	2	0	4	3	40	60	20	30	0	0	150
	SEIT4521	Blockchain Technology	IT	2	2	0	4	3	40	60	20	30	0	0	150
	SEIT4530	Cyber Security	IT	2	2	0	4	3	40	60	20	30	0	0	150
	SECE4513	Data Analytics	CE	2	2	0	4	3	40	60	20	30	0	0	150

CONTENT

Semester 7

Sr. No.	Course Code	Course Name	Page No.
1	SECE4013	System Software	1-3
2	SECE4022	Cloud Computing & Applications	4-7
3	SECE4031	Internet of Things	8-10
4	SECE4042	Artificial Intelligence	11-13
5	SECE4920	Major Project	
6	SEPD4010	Creativity, Problem Solving & Innovation	14-16
7	SECE4910	Summer Internship / Project 4 Weeks	

Electives

Sr. No.	Course Code	Course Name	Page No.
1	SECE4523	Machine Learning	17-19
2	SECE4530	Research Methodology	
3	SEIT4512	Information Security	20-22
4	SEIT4521	Blockchain Technology	23-25
5	SEIT4530	Cyber Security	26-28
6	SECE4513	Data Analytics	29-31

Department of Computer Engineering

Course Code: SECE4013 Course Name: System Software Prerequisite Course(s): SECE3020 - Theory of Computation SECE2031 - Operating System, SEIT3032 - Design and Analysis of Algorithm.

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Dractical	Tutorial	Credit	Theory		Practical		Tutorial		Total
	Practical	Tutorial		CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the design concepts of various system software like Assembler, Linker, Loader and Macro pre-processor, Utility Programs such as Text Editor and Debugger
- understand the execution process of High-level language programs.

Section I									
Module No.	Content	Hours	Weightage in %						
1.	Introduction Introduction, Software, Software Hierarchy, Systems Programming, Machine Structure, Interfaces, Address Space, Computer Languages, Tools, Life Cycle of a Source Program, Different Views on the Meaning of a Program, System Software Development, Recent Trends in Software Development, Levels of System Software	03	10						
2.	Overview of Language Processors Programming Languages and Language Processors, Language Processing Activities, Program Execution, Fundamental of Language Processing, Symbol Tables; Data Structures for Language Processing: Search Data structures, Allocation Data Structures	06	15						
3.	Assemblers Elements of Assembly Language Programming, Design of the Assembler, Assembler Design Criteria, Types of Assemblers, Two-Pass Assemblers, One-Pass Assemblers, Single pass Assembler for Intel x86, Algorithm of Single Pass Assembler, Multi-Pass Assemblers, Advanced Assembly Process, Variants of Assemblers Design of two pass assembler	06	15						
4.	Macro and Macro Processors Introduction, Macro Definition and Call, Macro Expansion, Nested Macro Calls, Advanced Macro Facilities, Design of a Macro Pre-processor, Design of a Macro Assembler, Functions of	08	10						

	a Macro Processor, Basic Tasks of a Macro Processor, Design Issues of Macro Processors, Features, Macro Processor Design Options, Two-Pass Macro Processors, One-Pass Macro Processors		
	Section II		
Module	Content	Hours	Weightage
No.		nours	in %
1.	Linkers and Loaders Introduction, Relocation of Linking Concept, Design of a Linker, Self-Relocating Programs, Linking in MSDOS, Linking of Overlay Structured Programs, Dynamic Linking, Loaders, Different Loading Schemes, Sequential and Direct Loaders, Compile-and- Go Loaders, General Loader Schemes, Absolute Loaders, Relocating Loaders, Practical Relocating Loaders, Linking Loaders, Relocating Linking Loaders, Linkers v/s Loaders	06	20
2.	Scanning and Parsing Programming Language Grammars, Classification of Grammar, Ambiguity in Grammatical Specification, Scanning, Parsing, Top Down Parsing, Bottom up Parsing, Language Processor Development Tools, LEX, YACC	06	10
3.	Compilers Causes of Large Semantic Gap, Binding and Binding Times, Data Structure used in Compiling, Scope Rules, Memory Allocation, Compilation of Expression, Compilation of Control Structure, Code Optimization	06	10
4.	Interpreters & Debuggers Benefits of Interpretation, Overview of Interpretation, the Java Language Environment, Java Virtual Machine, Types of Errors, Debugging Procedures, Classification of Debuggers, Dynamic/Interactive Debugger	04	10

Sr. No	Name of Practical	Hours
1	Write a program to read data from file and count the frequency of each	02
1.	word.	
2.	Implement a symbol table routine to determine whether an identifier	04
	lexeme has previously seen & store a new lexeme into symbol table	
3.	Implement One pass assembler.	02
4.	Implement Two pass assembler.	04
5.	Write a program to implement Macro processor.	02
6	Implement a lexical analyzer that reads the input one character at a time	04
0.	and returns to the parser the token it has found.	
7.	Write a program to left factor the given grammar	04
8.	Write a program to remove the Left Recursion from a given grammar.	04
9.	Implement recursive descent or predictive parser.	02
10.	Implement operator precedence or LR parser.	02

Text Book(s):

Title	Author/s	Publication
Compilers-Principles, Techniques and Tools	Aho. A.V., Sethi. R. & Ullman. J. D.	Pearson, 2006

Reference Book(s):

Title	Author/s	Publication	
System Software -An Introduction to System	Loland L D	3rd Ed, Addision	
Programming	Leiand L. B.	Wesley, reprint, 2003	
Compiler Construction-Principles and Practice	Louden, K. C	1st Ed, Thomson, 1997	
System Programming and Operating System	Dhamdhere. D. M.,	2nd Ed,TMH,1999	
Compiler Design in C,	Houlb A. I.,	PHI, EEE, 1995	

Web Material Link(s):

- https://nptel.ac.in/courses/106/108/106108052/
- https://www.youtube.com/watch?v=Qkwj651 961

Course Evaluation:

Theory:

- Continuous Evaluation Consist of two Tests of 30 Marks and 1 Hour of duration and finally the total will be converted to 30.
- Faculty Evaluation consists of 10 marks as per guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation Consist of Performance of Practical which should be evaluated out of 10 for each practical in the next turn and average of the same will be converted to 10 Marks.
- Internal Viva component of 10 Marks.
- Practical performance/quiz/test of 20 Marks during End Semester Exam.
- Viva/Oral performance of 10 Marks during End Semester Exam.

Course Outcome(s):

- understand the execution process of HLL programs.
- understand the working of scanners and parsers.
- understand the basic design of various system software.
- implement various system software.

Department of Computer Engineering

Course Code: SECE4022 Course Name: Cloud Computing & Applications Prerequisite Course(s): SECE3011 - Computer Networks SEIT2031 - Operating System

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total
	FIACULAI			CE	ESE	CE	ESE	CE	ESE	TOLAI
03	02	00	04	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the principles and paradigm of Cloud Computing
- understand the Service Model with reference to Cloud Computing
- appreciate the role of Virtualization Technologies
- gain ability to design and deploy Cloud Infrastructure
- understand cloud security issues and solutions

Section I									
Module	Contont	Hours	Weightage						
No.	content	nours	in %						
	Introduction to Cloud Computing								
	Overview, Roots of Cloud Computing, Layers and Types of								
1	Cloud, Desired Features of a Cloud, Benefits and Disadvantages	05	10						
1.	of Cloud Computing, Cloud Infrastructure Management,	05	10						
	Infrastructure as a Service Providers, Platform as a Service								
	Providers, Challenges and Risks								
	Cloud Architecture, Services and Applications								
	Exploring the Cloud Computing Stack, connecting to the Cloud,								
	Infrastructure as a Service, Platform as a Service, Saas Vs. Paas,								
2.	Using PaaS Application Frameworks, Software as a Service,	07	10						
	Cloud Deployment Models, Public vs Private Cloud, Cloud								
	Solutions, Cloud ecosystem, Service management, Identity as a								
	Service, Compliance as a Service								
	Virtualization, Abstraction and Cloud Platform								
2	Introduction to Virtualization Technologies, Load Balancing and	05	1 5						
3.	Virtualization, Understanding Hypervisors, Understanding	05	15						
	Machine Imaging, Porting Applications, Virtual Machines								

	Provisioning and Manageability Virtual Machine Migration		
	Services, Virtual Machine Provisioning and Migration in Action,		
	Provisioning in the Cloud Hypervisors		
	Cloud Infrastructure and Cloud Resource Management		
	Architectural Design of Compute and Storage Clouds, Layered		
	Cloud Architecture Development, Design Challenges, Inter Cloud		
4.	Resource Management, Resource Provisioning and Platform	06	15
	Deployment, Global Exchange of Cloud Resources.		
	Administrating the Clouds, Cloud Management Products,		
	Emerging Cloud Management Standards		
	Section II		
Module	Content	Hours	Weightage
No.		nours	in %
	Cloud Security		
	Security Overview, Cloud Security Challenges and Risks,		
	Software-as-a-Service Security, Cloud computing security		
	architecture: Architectural Considerations, General Issues		
	Securing the Cloud, Securing Data, Data Security, Application		
1.	Security, Virtual Machine Security, Identity and Presence,	08	15
	Identity Management and Access Control, Autonomic Security		
	Establishing Trusted Cloud computing, Secure Execution		
	Environments and Communications, , Identity Management and		
	Access control Identity management, Access control, Autonomic		
	Security Storage Area Networks, Disaster Recovery in Clouds		
	AWS Programming, Management Console and Storage		
	Basic Understanding APIs - AWS programming interfaces, Web		
	services, AWS URL naming, Matching interfaces and services,		
	Elastic block store - Simple storage service, Define the AWS		
2.	Cloud and its value proposition, identify aspects of AWS Cloud	07	20
	Economic, List the different cloud architecture design		
	principles, Security and Compliance, Define the AWS Shared		
	Responsibility Model, Define AWS Cloud Security and		
	Compliance Concepts, Identify AWS Access Management		
	Capabilities, Identify Resources for Security Support		
	AWS Technology, Billing and Pricing		
	Define the AWS Clobal Infrastructure Identify the Core AWS		
2	Services Identify Descures for Technology Support Company	07	1 5
5.	and Contrast the Various Driging Models for AWS Description the	07	12
	Various Account Structures in Polation to AMC Billing and		
	various Account Structures in Kelation to AWS Billing and		
	Pricing, identify Resources Available for Billing Support		

Sr. No	Name of Practical	Hours
1.	Write pros and cons of Cloud Computing.	04
2.	Summarize Cloud service models with real time examples.	04
3.	Define Virtualization. Also list and explain different Hypervisors.	04
4.	Discuss performance evaluation of service over cloud.	04
5.	Software study on Hadoop, MapReduce and HDFS.	04
6	Create an AMI for Hadoop and implementing short Hadoop programs on	06
0.	the Amazon Web Services platform.	
7.	Create a scenario that use Amazon S3 as storage on cloud.	04

Text Book(s):

Title	Author/s	Publication
Cloud Computing Bible	Barrie Sosinsky	John Wiley & Sons

Reference Book(s):

Title	Author/s	Publication
Amazon Web Services for Dummies	Bernard Golden	Dummies
Amazon Web Services in Action	Michael Wittig and Andreas Wittig	Dreamtech Press
Building Applications in the Cloud:	Christopher M. Moyer	Pearson Addison-
Concepts, Patterns and Projects	Christopher M. Moyer	Wesley Professional
Cloud Computing Design Patterns	Thomas Erl	Prentice Hall

Web Material Link(s):

- CloudSim 3.0.3
- <u>http://www.cloudbus.org/</u>
- <u>https://aws.amazon.com/</u>
- <u>http://aws.amazon.com/documentation/</u>
- <u>http://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted out of 30 marks.
- Faculty Evaluation consists of 10 marks as per guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 Marks.

Practical:

- Continuous Evaluation Consist of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 Marks.
- Internal Viva consists of 10 Marks.
- Practical performance/quiz/test of 15 Marks during End Semester Exam.
- Viva/Oral performance of 15 Marks during End Semester Exam.

Course Outcome(s):

- explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came about, the characteristics, advantages and challenges brought about by the various models and services in cloud computing.
- apply the fundamental concepts in datacenters to understand the tradeoffs in power, efficiency and cost by Load balancing approach.
- discuss system virtualization and outline its role in enabling the cloud computing system model.
- illustrate the fundamental concepts of cloud storage and demonstrate their use in storage systems such as Amazon S3 and HDFS.
- analyze various cloud programming models and apply them to solve problems on the cloud.
- understand various management and other distinguish services of AWS.
- analyze the billing of resources and other paradigm: how to deal with disasters.
- understand security and compliances for AWS.
- deploy applications over commercial cloud computing infrastructures such as Amazon.

Department of Computer Engineering

Course Code: SECE4031 Course Name: Internet of Things Prerequisite Course(s): SEIT3022 - Embedded System

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	ne (Mai	rks)				
Theory	Dractical	al Tutorial Credit		The	eory	Prac	ctical	Tut	orial	Total		
Theory	Flactical	Tutoriai	Tutorial		Credit	CE	ESE	CE	ESE	CE	ESE	TOLAI
02	04	00	04	40	60	40	60	00	00	200		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn how to interface sensors and Actuators with embedded IoT devices
- select connectivity and communication IoT protocols
- implement IoT applications

	Section I							
Module No.	Content	Hours	Weightage in %					
1.	Introduction Introduction to Internet of things, end-to-end IoT Architecture, Requirement of IoT challenges and issues of IoT, selection of hardware and software, case studies of IoT applications.	02	06					
2.	Embedded IoT Devices Choosing criteria for embedded IoT devices, Enlist MCU based and MPU based IoT devices, Comparison between Aruino Uno, NodeMCU and ESP32, Architecture of ESP8266, variants of ESP8266, Arduino C, GPIO programming.	05	20					
3.	Sensors & Actuators Types of sensors, working principles of actuators, Interfacing & Programming of digital, analog, protocol based sensors and actuators	04	12					
4.	Networking IoT platform Raspberry Pi and its variant, Raspberry Pi programming, Choosing a right board, IoT gateway, Tools, Sensing IoT Environments.	04	12					

Section II						
Module No.	Content	Hours	Weightage in %			
1.	RFID and iBeacons Introduction to RFID and iBeacon, Hardware & Software, Hardware used for IoT RFID, Connection to Serve, Data on RFID Server and Classic distributed the problem.	04	14			
2.	IoT connectivity protocols Networks layer protocols: RPL and 6LowPAN, WiFi, Bluetooth, BLE, LORAwan, NFC, cellular, zegbee, and Ethernet	04	14			
3.	IoT communication protocol: MQTT Existing cloud platforms, Various application layer IoT protocols, MQTT protocol, Building online server using MQTT, data exchange and storage in cloud, User Interface development.	04	14			
4.	IoT Security IOT Security, Dangers, Assigning values to Information, Security Components, Key Management, Update Management.	03	08			

Sr. No	Name of Practical	Hours
1.	Getting started with Arduino IDE, add ESP8266 and ESP32 in the	04
	Arduino IDE. GPIO Interfacing and programming	
2.	Digital on/off sensor (PIR and IR) Interfacing programming	04
3.	Analog sensors Interfacing (Accelerometer and gyroscope) &	04
	programming	
5.	Interfacing and programming of actuators	04
6.	Walk through existing library for ESP8266. Configure ESP8266 in	02
	station and access mode.	
7.	Development of an offline server using http protocol	04
8.	Development of an online server	04
9.	Experimenting with existing cloud platforms	04
10.	Development of Android applications suitable for IoT	04
11.	Exchange information using MQTT protocol	04
12.	Getting started with Raspberry Pi and OS Installation	04
13.	Experimenting with Raspberry Pi using Python	04
14.	Dashboard development using visual programming: NodeRED	06
15.	IoT based mini project	08

Text Book(s):

Title	Author/s	Publication
Beginning Arduino (2 nd Edition)	Michael McRoberts	TIA
Raspberry Pi IoT Projects	John C. Shovic	Apress

Reference Book(s):

Title	Author/s	Publication	
Mastering Internet of Things: Design and create	Dotor Wahar	Dackt	
your own IoT applications using Raspberry Pi 3	reter waller	FACKI	

Web Material Link(s):

- <u>https://www.ibm.com/blogs/internet-of-things/what-is-the-iot/</u>
- <u>https://www.tutorialspoint.com/internet_of_things/</u>
- <u>https://www.tutorialspoint.com/arduino/</u>
- <u>https://pythonprogramming.net/introduction-raspberry-pi-tutorials/</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 20 marks.
- Internal viva consists of 20 marks.
- Practical performance/quiz/test consists of 30 marks during End Semester Exam.
- Viva/ Oral performance consists of 30 marks during End Semester Exam.

Course Outcome(s):

- understand the fundamentals of the Internet of Things.
- understand IoT architecture, hardware, and software.
- develop projects of the Internet of Things.

Department of Computer Engineering

Course Code: SECE4042 Course Name: Artificial Intelligence Prerequisite Course(s): SECE2031 - Data Structures SESH2051 - Mathematical Methods for Computation

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	ne (Mai	rks)					
Theory	hoomy Dractical Tytorial		Futorial Cradit		eory	Prac	ctical	Tut	orial	Total			
Theory	Flattical	Tutoriai	Tutoriai				CE	ESE	CE	ESE	CE	ESE	Total
03	02	00	04	40	60	20	30	00	00	150			

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand basics of AI.
- develop roles in future and also introduce the intelligence of machine.
- design AI.

	Section I					
Module	Content	Hours	Weightage			
NO.			In %			
	What is Al?					
1.	What is an AI Technique? The AI Problems and applications,	04	10			
	Major areas of Artificial Intelligence, History of AI					
	Problems, State Space Search & Heuristic Search Techniques					
2	Defining the Problems as a State Space Search, Production	08	20			
2.	Systems: control & search strategies, Depth first and Breadth	00	20			
	first search, Hill Climbing, Best first search, A* algorithm					
	Knowledge Representation Issues					
2	Representations and Mappings, Approaches to Knowledge	06	10			
э.	Representation, Using Propositional logic and Predicate Logic,	00	10			
	Resolution, Semantic network, Frame based knowledge					
	Representing Knowledge Using Rules					
4.	Procedural Versus Declarative Knowledge, Forward Reasoning,					
	Backward Reasoning. Symbolic Reasoning, Under Uncertainty:	05	10			
	Introduction to Non-Monotonic Reasoning, Logics for Non-					
	monotonic Reasoning					

Section II						
Module	Content	Hours	Weightage			
No.	Gontent	nours	in %			
	Uncertain Reasoning and alternatives					
1	Probability and Bayes' Theorem, Certainty Factors and Rule-	00	20			
1.	Base Systems, Bayesian Networks, Dempster Shafer Theory,	00	20			
	Fuzzy sets, Fuzzy Logic, Fuzzy systems, Hidden Markov model					
	Game Theory					
2.	Introduction to Game playing, The Minimax search procedure,	05	10			
	Alpha-Beta procedure, Refinements, Iterative Deepening					
	Natural Language Processing					
3.	Introduction, Syntactic Processing, Semantic Analysis, Discourse	05	10			
	and Pragmatic Processing, Spell Checking.					
	Connectionist Models					
4	Introduction to Hopfield Network, Learning in Neural Network,	04	10			
4.	Application of Neural Networks, Recurrent Networks,	04	10			
	Introduction to multilayer Neural networks					

Sr No	Name of Practical	Hours
1.	Overview of Artificial Intelligence systems.	02
2.	Write a program to implement BFS (for 8 puzzle problem or Water Jug	02
	problem or any AI search problem)	
3.	Write a program to implement DFS (for 8 puzzle problem or Water Jug	02
	problem or any AI search problem)	
4.	Write a program to Implement A* Algorithm.	04
5.	Explore different python packages which are applicable in AI.	04
6.	Write a program to construct a Bayesian network from given data.	04
7.	Write a program to infer from the Bayesian network.	04
8.	Hidden Markov model implementation using python.	04
9.	Character recognition application using python.	02
10.	NLP application using python.	02

Reference Book(s):

Title	Author/s	Publication
Artificial Intelligence	By Flaine Pich And Keyin Knight	(2nd Edition)
Artificial intelligence	by Elame Kich And Kevin Kinght	Tata McGraw-Hill
Artificial Intelligence: A Modern	Stuart Russal Poter Nervig PHI	
Approach	Stuart Russel, reter Norvig, riff	

Web links:

- <u>https://nptel.ac.in/courses/106106126/</u>
- <u>https://www.edureka.co/post-graduate/machine-learning-and-</u> ai?utm_source=google&utm_medium=cpc&utm_campaign=ET-PGPINML-05-Search-AI-<u>High-Intent-Minus-18-</u> 24&gclid=EAIaIQobChMI55v6_uC55wIVjx0rCh001wW5EAAYAyAAEgJcyfD_BwE

Course Evaluation:

Theory:

- Continuous Evaluation Consist of Two Test Each of 30 Marks and 1 Hour of duration.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation Consist of Performance of Practical which should be evaluated out of 10 for each practical and average of the same will be converted to 10 Marks.
- Internal Viva component of 10 marks.
- Practical performance/quiz/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 Marks during End Semester Exam.

Course Outcome(s):

- learn the fundamentals of distributed environment.
- develop efficient distributed system with their own logic & capabilities.
- understand the security aspects in distributed environment.

Center for Skill Enhancement and Professional Development

Course Code: SEPD4010 Course Name: Creativity, Problem Solving & Innovation Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	ne (Ma	rks)		
Theory	owy Dragtical Tytopial Cred		Tutorial Credit		eory	Prac	ctical	Tut	orial	Total
Theory	Flattical	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE	Total
03	00	00	03	100	00	00	00	00	00	100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- achieve expertise with the technicalities of creativity and problem solving.
- advance an assertiveness for innovation.
- advance creative thinking skills using shaft of learning components leading to understanding of plans of creativity, problem solving and innovation
- discuss uses of the concepts of creativity and problem-solving skills in personal, social, academic, and profession life.

	Section I							
Module	Contont	Hours	Weightage					
No.	content	nouis	in %					
	Introduction to Creativity, Problem Solving and Innovation							
	Definitions of Problem Solving, Creativity and Innovation							
	• Need for Problem Solving and Innovation & Scope of							
1.	Creativity	08	17					
	Types and Styles of Thinking							
	• Strategies to Develop Creativity, Problem Solving and							
	Innovation Skills							
	Questioning and Learning							
	• Introduction to Questioning, Learning and Visualization and							
2	its Strategies	07	10					
Ζ.	Sources and Methods of Questioning and Learning	07	16					
	Finding Perspective, Visualizing thinking							
	Mind Mapping							
	Creative Thinking and Problem Solving							
2	Need of Creative Thinking	00	17					
3.	• Cracking Creativity - Reversals, Reversing Perspective,	08	1/					
	seeing all sides, Looking in other world,							

	• Finding what you are not looking for and following up		
	Fishbone Diagram		
	SCAMPER Technique		
	Section II		
Module	Content	Hours	Weightage
No.		nours	in %
	Logic and Reasoning		
	Basic Concept of Logic		
	• Divergent Vs Convergent Thinking, Inductive Vs Deductive		
1.	Thinking	08	17
	Fusion of Ideas for Problem Solving		
	Moral Reasoning		
	Improvisation		
	Practices of Playing		
	Collaboration and Brainstorming		
2	The Spirit of Koinonia	07	10
۷.	• QFT Model	07	10
	Connecting the Unconnected		
	Making Novel Combinations		
	Review Strategies for Creative problem-solving methods		
	A Heuristic Technique		
	Problem-Solving Strategies: Why Bother?		
2	• Five Building Blocks as per Fogler & LeBlanc	07	1 7
5.	Strategy for Critical Thinking for Choosing	07	1/
	Lateral Thinking		
	• Six Thinking Hats by Edward De Bono		
	Design Thinking		

Text Book(s):

Title	Author/s	Publication		
Thinker Toys	Michael Michalko	Random House Publication 2006		
Crackling Creativity, The Secrets	Michael Michalko	Ton Spood Proce 2001		
of Creative Genus		Tell Speed Fless 2001		

Reference Book(s):

Title	Author/s	Publication
Zig Zag, The Surprising Path to	D Koith Sawwor	Josev Bass Publication 2012
Greater Creativity	K Keltil Sawyei	Jossy-Dass Fublication 2013
De Bono's Thinking Course	Edward De Bono	Penguin Publication 1994
Six Thinking Hats	Edward De Bono	Penguin Publication 1999
How to Mind Map	Tony Buzan	Thorsons Publication 2002
The Myths of Innovation	Scott Berkum	Berkun Publication 2010
Creative confidence: Unleashing	Tom Kelly and David	William Collins Publication
the creative Potential within Us all	Kelly	2013
The all Laughed	Ira Flatow	Harper Publication 1992

The Ultimate Lateral & Critical	Paul Sloane, Des	Sterling Publication 2002
Thinking Puzzle book	MacHale & M.A. DiSpezio	

Course Evaluation:

Section	Module No.	Evaluation Criteria	Marks	
	1	Group Activity on Brainstorming	15	
1	2	Mind Mapping Activity	10	
	3	Chart Preparation on 'Practicality of Fishbone Diagram'	15	
		Group presentation on 'SCAMPER Technique & its applications'	10	
	1	Group Presentation on Critical Analysis of a Govt. scheme/	15	
	1	policy/ budget (merit/ demerit, pros/cons etc)	15	
2	2	Group Discussion/ Debate/ Elocution	10	
	2	Problem Solving Activity (Individual)	10	
	5	Presentation (Learning Outcomes)	15	
		Grand Total	100	

Course Outcome(s):

- establish creativity in their day to day actions and educational output.
- solve all types of problems with an optimistic and an impartial attitude.
- reflect innovatively and work towards problem solving in a tactical way.
- initiate different and advanced practices in their selected field of profession.

Department of Computer Engineering

Course Code: SECE4523 Course Name: Machine Learning Prerequisite Course(s): SECE2031 - Data Structures, SEIT3032 - Design and Analysis of Algorithms, SESH2051 - Mathematical Methods for Computation

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Scher	ne (Mai	rks)		
Theory Drestical Tyterial		Credit	The	eory	Prac	ctical	Tute	orial	Total	
Theory	FIACULAI	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	TOLAT
02	02	00	03	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- master the concepts of supervised and unsupervised learning, recommendation engine, and time series modeling.
- implement models such as support vector machines, kernel SVM, naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-means clustering and more in Python.
- comprehend the theoretical concepts and how they relate to the practical aspects of Machine Learning.

Section I						
Module	Contont	Hours	Weightage			
No.	content	nouis	in %			
	Introduction to Artificial Intelligence and Machine					
	Learning					
1.	Learning Problems, Designing a Learning System, Issues with	04	10			
	Machine Learning. Concept Learning, Version Spaces and					
	Candidate Eliminations, Inductive Bias					
	Supervised learning					
	Decision Tree Representation, Appropriate problems for					
2	Decision tree learning, Algorithm, Hypothesis space search in	06	20			
Δ.	Decision tree learning, inductive bias in Decision tree learning,	00	20			
	Issues in Decision tree learning, Radial Bases, Functions, Case					
	Based Reasoning.					
	Artificial Neural Networks and Genetic Algorithms					
3.	Neural Network Representation, Appropriate Problems for	05	20			
	Neural Network Learning, Perceptron's, Multilayer Networks					

	and Back Propagation Algorithms, Remarks on Back		
	Propagation Algorithms		
	Case Study: face Recognition		
	Section II		
Module	Contont	Hours	Weightage
No.	content	nours	in %
	Bayesian Learning		
	Bayes Theorem, Bayes Theorem and Concept Learning,		
	Maximum Likelihood and Least squared Error Hypothesis,		
1.	Maximum likelihood hypothesis for Predicting probabilities,	06	20
	Minimum Description Length, Principle, Bayes Optimal		
	Classifier, Gibbs Algorithm, Naive Bayes Classifier.		
	Case Study: Learning to classify text.		
	Unsupervised learning		
2	Unsupervised learning, Applications, challenges, K- Nearest	05	20
Ζ.	Neighbor Learning Locally Weighted Regression, SVM, Apriori	05	20
	Algorithm, EM Algorithm.		
2	Overview	04	10
3.	Typical Application Areas, Such as Recommender System	04	10

Sr. No	Name of Practical	Hours
1.	Introduction	02
2.	Classifying with distance measures	02
3.	Constructing Decision trees	02
4.	Classification using Decision Trees	02
5.	K-means	02
6.	Classification with k-Nearest Neighbors	02
7.	Random Forest	02
8.	Support vector machines	02
9.	Expectation Maximization	02
10.	Page Rank	04
11.	Naive Bayes Classification	04
12.	CART	04

Text Book(s):

Title	Author/s	Publication
Machine Learning	Tom M Mitchell	McGraw Hill

Reference Book(s):

Title	Author/s	Publication
Pattern Recognition and Machine Learning	Christopher Bishop	Springer-Verlag New
		York Inc.
Real-World Machine Learning	Henrik Brink, Joseph	DreamTech
	Richards, Mark Fetherolf	
Machine Learning in Action	Peter Harrington	DreamTech

Web Material Link(s):

- <u>https://nptel.ac.in/courses/106/105/106105152/</u>
- https://in.mathworks.com/campaigns/offers/machine-learning-withmatlab.html?gclid=EAIaIQobChMIrv2dqpOh5wIVkoiPCh0t9g8CEAAYASAAEgKIfD_BwE&ef_id=EAIaIQobChMIrv2dqpOh5wIVkoiPCh0t9g8CEAAYASAAEgKIfD_BwE:G:s&s_kwcid=AL!8664!3!281794527296!b!!g!!%2Bmachine%20%2Blearning&s_ei d=psn_57384022552&q=+machine%20+learning
- <u>https://wqu.org/programs/datascience/?utm_source=datawrkz&utm_medium=search&ut_m_campaign=datascience&gclid=EAIaIQobChMIr_TK5ZOh5wIVzQorCh0YdQBvEAAYASAAE_gLb5PD_BwE</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/ Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

- the concept of Machine learning and range of problems that can be solved by machine learning.
- They will be able to compare different types of learning algorithms and apply machine learning concepts in real life problems.

Department of Information Technology

Course Code: SEIT4512 Course Name: Information Security Prerequisite Course(s): SESH2051- Mathematical Methods for Computation SECE3011 - Computer Networks

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	ne (Mai	rks)		
Theory Dreatice		ractical Tutorial		The	eory	Prac	ctical	Tut	orial	Total
Theory	Flattital	Tutoriai	creuit	CE	ESE	CE	ESE	CE	ESE	Total
02	02	00	03	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand cryptography theories, algorithms and systems.
- understand the various key distribution and management schemes.
- understand how to deploy hashing techniques to secure data in transits across different networks.

Section – I							
Module	Contant	Hours	Weightage				
No.	content	nours	in %				
1.	Introduction Symmetric Cipher Model, Cryptography and Cryptanalysis, Types of Security, Security Services, Security Attacks and	03	07				
	Security Mechanisms, Substitution and Transposition techniques						
2.	Classical Encryption Techniques Substitution Ciphers, Permutation/Transposition Ciphers, Play Fair and Hill Ciphers, Polyalphabetic Ciphers, OTP and Machine Ciphers	03	07				
3.	Stream Ciphers and Block Ciphers Block Cipher structure, Data Encryption standard (DES) with example, strength of DES, Design principles of block cipher, AES with Structure, its Transformation Functions, Key Expansion, Example and Implementation	03	15				
4.	Multiple encryption and triple DES Electronic Code Book, Cipher Block Chaining Mode, Cipher Feedback Mode, Output Feedback Mode, Counter Mode	02	06				

5.	Public Key CryptosystemsRequirementsandCryptanalysis,RSAalgorithm,itscomputationalaspectsandsecurity,Diffie-HillmanKeyExchange algorithm, Man-in-Middle attack	04	15
	Section – II	I	
Module No.	Content	Hours	Weightage In %
1.	Key Management and Distribution Symmetric key distribution using symmetric and asymmetric encryptions, distribution of public keys, X.509 certificates, Public key infrastructure	03	10
2.	Cryptographic Hash Functions Simple hash functions, its requirements and security, Hash functions based on Cipher Block Chaining, Secure Hash Algorithm (SHA)	03	10
3.	Message Authentication CodesRequirements of MAC and security, MACs based on HashFunctions, Macs based on Block Ciphers	03	10
4.	Digital Signature, its Properties Requirements and security, various digital signature schemes (Elgamal and Schnorr), NIST digital Signature algorithm	03	10
5.	Advanced Topics – Intruders, Virus, Trojans, Malware, Ransomware, Requirements of Security in Various area of Computer Science	03	10

Sr. No	Name of Practical	Hours
1.	Write a program to implement ceaser cipher	2
2.	Write a program to implement the Playfair cipher	2
3.	Write a program to implement the columnar transposition cipher	2
4.	Write a program to implement rail fence transposition cipher	2
5.	Write a program to implement Vernam cipher	2
6.	Write a program to implement n-gram Hill Cipher.	2
7.	Write a program to implement the Vigenere Cipher	2
8.	Write a program that implements the Extended Euclidean Algorithm to	2
	find inverse of a given number in the Galois field.	
9.	Write a program to implement DES Cipher	4
10.	Write a program to implement AES Cipher	4
11.	Write a program to implement RSA Cryptosystem	4
12.	Demonstration of Wireshark for Packet Capturing	2

Text Book(s):

Title	Author/s	Publication
Cryptography and Network Security: Principles and	William Stallings	Prentice Hall
Practice, 5/e		

Reference Book(s):

Title	Author/s	Publication	
Cryptography and Network Security	Behrouz A. Forouzan	McGraw-Hill	
Network Security: Private Communications	Kaufman Dorlman and Speciner	Drontico Hall	
in a Public World, second edition_	Kauman, Perman and Specifier	FTentice nall	
Handbook of Applied Cryptography	Menezes, van Oorschot and	CPC Proce	
Tandbook of Applied Cryptography	Vanstone	CRC FIESS	
Computer Security, 3/e	Gollmann	Wiley	

Web Material Link(s):

- <u>https://nptel.ac.in/courses/106/106/106106129/</u>
- <u>http://www.omnisecu.com/security/index.php</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/ Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

- learn the concepts related to applied cryptography, including plaintext, cipher text, symmetric cryptography, asymmetric cryptography, and digital signatures.
- learn the theory behind the security of different cryptographic algorithms.
 - learn the need of digital signatures for secure transmission and applying various hashing strategies to make system integrated towards various attacks.

Department of Information Technology

Course Code: SEIT4521 Course Name: Blockchain Technology Course Prerequisite(s): SECE2031 - Data Structures

Teaching & Examination Scheme:

-										
Teaching Scheme (Hours/Week)				Exa	aminati	on Scher	ne (Mai	rks)		
Theory Prestical Tytorial		Tutorial	Credit	The	eory	Prac	ctical	Tute	orial	Total
Theory	Flattical	Tutoriai	Cleun	CE	ESE	CE	ESE	CE	ESE	TOLAT
02	02	00	03	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- understand blockchain and its applications.
- analyze IBM's strategy in blockchain platform.
- understand security in blockchain based networks.

Section I						
Module	Contont	Hours	Weightage			
No	content	nours	in %			
	Introduction to Blockchain					
	Blockchain types, Public key cryptography, Hashing, Digital					
1	Signature, Business networks, Assets, Ledgers, Transactions	05	10			
1.	and Contracts, the problem with existing networks, how	05	10			
	blockchain solves this problem, Requirements of a blockchain					
	for business.					
	Blockchain Networks					
	Overview of active networks, TradeLens - Improving global					
2	trade, IBM Food Trust - Supply Chain Transparency, IBM World	05	20			
۷.	Wire - Global Payments, Decentralised and Trusted Identity,	05	20			
	Further Examples by Industry, Key Players for Blockchain					
	Adoption					
	IBM and Blockchain					
3.	How IBM can help with a Blockchain Project, IBM's Blockchain					
	strategy, the IBM Blockchain Platform, The Linux Foundation's	05	20			
	Hyperledger Project, Hyperledger Fabric, Continuing your					
	Blockchain Journey					

Section II						
Module	Contont	Hours	Weightage			
No	Content	nours	in %			
	Blockchain composed					
1	What is Hyperledger Composer, Components and Structure of	05	10			
1	Composer, An example Business Network: Car Auction Market,	05	10			
	Extensive, Familiar, Open Tool Set					
	Blockchain fabric development					
2.	Participants and Components Overview, Developer	05	20			
	Considerations					
	Blockchain architecture					
3.	Administrator (operator) Considerations, Security: Public vs.	05	20			
	Private Blockchains, Architect Considerations, Network	05	20			
	Consensus Considerations					

Sr No	Name of Practical	Hours
1.	Demo - Vehicle Lifecycle Demo: Transfer assets in blockchain	04
2.	Demo of Hyperledger Composer	04
3.	Create a Hyperledger Composer solution	06
4.	Write your first blockchain application	08
5.	Build your own network	08

Text Book:

Title	Author/s	Publication
Blockchain Basics – A Non-Technical Introduction in 25 Steps.	Daniel Drescher	Apress

Reference Book:

Title	Author/s	Publication
Mastering Blockchain	Imran Bashir	Packt
The Business Blockchain – Promise, practice, and application	William	Wiley
of the next internet technology.	Mougayar	

Web Material Link(s):

- <u>https://www.udemy.com/course/blockchain-and-bitcoin-fundamentals/</u>
- <u>https://cognitiveclass.ai/courses/blockchain-course</u>
- <u>https://www.coursera.org/courses?query=blockchain</u>

Course Evaluation:

Theory:

- Continuous Evaluation Consists of Two Tests; evaluation of each test consists of 15 marks. The duration of each test is 60 minutes.
- Students have to appear for a quiz/group discussion, which consists of 10 marks.
- End Semester Examination will consist of 60 Marks.

Practical:

- Continuous Evaluation consists of performance of practical, which should be evaluated out of 10 per each practical. At the end of the semester, average of the entire practical will be converted to 10 Marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/test of 15 Marks during End Semester Exam.
- Viva/Oral performance of 15 Marks during End Semester Exam.

Course Outcome(s):

- understand blockchain and its applications.
- create their own Hyperledger composer solution.
- create their own Blockchain application.
- build their own network.

Department of Information Technology

Course Code: SEIT4530 Course Name: Cyber Security Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)										
Theory							The	eory	Prac	ctical	Tute	orial	Total
Ineory	Practical Iutorial	Tutorial	ai i utoriai	Credit	Credit	CE	ESE	CE	ESE	CE	ESE	Total	
02	02	00	03	40	60	20	30	00	00	150			

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify and classify various cybercrimes with respect to organizational weaknesses in order to mitigate the security risk and estimate the impact on society and world.
- interpret and apply Indian IT laws in various legal issues.

Section – I						
Module	Contont	Hours	Weightage			
No.	content	nouis	in %			
1.	Introduction to Cyber Security Overview of Cyber Security, Internet Governance – Challenges and Constraints, Cyber Threats: - Cyber Warfare-Cyber Crime- Cyber Terrorism-Cyber Espionage, need for a Comprehensive Cyber Security Policy, need for a Nodal Authority, Need for an International convention on Cyberspace Security Standards	03	10			
2.	CyberSecurityVulnerabilitiesandCyberSecuritySafeguardsCyberSecurityVulnerabilities-Overview, vulnerabilities inSoftware,SystemAdministration,ComplexNetworkArchitectures,OpenAccess toOrganizationalData,WeakAuthentication,UnprotectedBroadbandcommunications,PoorCyberSecurityAwareness,CyberSecuritySafeguards-Overview,AccessControl,Audit,Authentication,Biometrics,Cryptography,Deception,Denial ofServiceFilters,EthicalHacking,Firewalls,IntrusionDetectionSystem,Response,Scanning,SecurityPolicy,ThreatManagementSecuritySecuritySecuritySecuritySecuritySecurity	06	20			
3.	Securing Web Application, Services and Servers Introduction, Basic security for HTTP Applications and Services,	03	10			

	Basic Security for SOAP Services, Identity Management and Web		
	Services, Authorization Patterns, Security Considerations,		
	Challenges		
	Intrusion Detection and Prevention		
	Intrusion, Physical Theft, Abuse of Privileges, Unauthorized		
	Access by Outsider, Malware infection, Intrusion detection and		
4	Prevention Techniques, Anti-Malware software, Network based	02	10
4.	Intrusion detection Systems, Network based Intrusion	03	10
	Prevention Systems, Host based Intrusion prevention Systems,		
	Security Information Management, Network Session Analysis,		
	System Integrity Validation		
	Section – II		
Module	Contont	Hours	Weightage
No.	content	nours	In %
	Cryptography and Network Security		
	Introduction to Cryptography, Symmetric key Cryptography,		
	Asymmetric key Cryptography, Message Authentication, Digital		
1	Signatures, Applications of Cryptography. Overview of Firewalls-	05	17
1.	Types of Firewalls, User Management, VPN Security Security	05	17
	Protocols: - security at the Application Layer- PGP and S/MIME,		
	Security at Transport Layer- SSL and TLS, Security at Network		
	Layer-IPSec		
	Cyberspace and the Law		
	Introduction, Cyber Security Regulations, Roles of International		
2.	Law, the state and Private Sector in Cyberspace, Cyber Security	05	17
	Standards. The INDIAN Cyberspace, National Cyber Security		
	Policy 2013		
	Cyber Forensics		
2	Introduction to Cyber Forensics, Handling Preliminary analysis,		
	Investigating Investigations, Controlling an Investigation,	05	16
5.	conducting disk-based Information-hiding, Scrutinizing E-mail,	05	10
	Validating E-mail Header information, Tracing Internet access,		
	Tracing Memory in real-time.		

Sr. No	Name of Practical	Hours
1.	TCP scanning using NMAP	2
2.	Port scanning using NMAP	2
3.	TCP / UDP connectivity using Netcat	2
4.	Network vulnerability using OpenVAS	4
5.	Web application testing using DVWA	2
6.	Manual SQL injection using DVWA	4
7.	XSS using DVWA	4
8.	Automated SQL injection with SqlMap	4
9.	Write a program to create and simulate an attack. Then explain how	6
	to avoid it.	

Text Book(s):

Title	Author/s	Publication
Cybersecurity for Beginners	Raef Meeuwisse	Cyber Simplicity Ltd

Reference Book(s):

Title	Author/s	Publication
Cyber Security	Nina Godbole, SunitBelapure	Wiley India, New Delhi
Anti-Hacker Tool Kit,4th Edition	Mike Shema	McGrawHill Publication
The Indian Cyber Law	Suresh T. Vishwanathan;	Bharat Law House New
		Delhi
Handbook of Applied	Menezes, van Oorschot and	CRC Press
Cryptography	Vanstone	
Computer Security, 3/e	Gollmann	Wiley

Web Material Link(s):

- https://nptel.ac.in/courses/106105031/
- <u>https://www.javatpoint.com/cyber-security-tutorial</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/ Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

- Understand cyber-attack, types of cybercrimes, cyber laws and also how to protect them self and ultimately society from such attacks.
- Apply Information Security Standards compliance during software design and development.

Department of Computer Engineering

Course Code: SECE4513 Course Name: Data Analytics Prerequisite Course(s): SECE2011 - Database Management System SECE2031 - Data Structures SECE3031 - Data Warehouse and Data Mining

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	aminati	on Schei	ne (Mai	rks)		
Theory	orry Practical Tutorial Cr		Futorial Cradit		eory	Prac	ctical	Tute	orial	Total
Theory	Flattital	Tutoriai	creuit	CE	ESE	CE	ESE	CE	ESE	TOtal
02	02	00	03	40	60	20	30	00	00	150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- find a meaningful pattern in data.
- learn to analyze the data using intelligent techniques.
- make better business decisions by using advanced techniques in data analytics.

Section I						
Module	Contant	Hours	Weightage			
No.	Content	nours	in %			
	Introduction, Data Definitions and Analysis Techniques					
	Introduction to Data Analytics, Types of Data Analytics, Process					
1.	of Data Analytics, Importance and Challenges of Big Data	07	25			
	Analytics Elements, Variables, Data Categorization, Levels of					
	Measurement, Data Management and Indexing.					
	Statistics for Data Analytics					
2.	Introduction, Statistical Hypothesis Generation and Testing,					
	Descriptive Statistics, Inferential Statistics through Hypothesis	08	25			
	Tests, Chi-Square Test, T-Test, Analysis of Variance, Correlation					
	Analysis, Maximum Likelihood Test					
	Section II					
Module	Contont	Hauna	Weightage			
No.	Content	Hours	in %			
	Data Analysis Techniques					
1.	Regression Analysis and its types, K Nearest Neighbors					
	Regression & Classification Techniques, Clustering, Association	10	35			
	Rules Analysis					

2.	Prescriptive Analytics		
	Creating Data for Analytics through Designed Experiments,	05	15
	Active Learning and Reinforcement Learning, Visual Data		
	Analysis Techniques, Interaction Techniques		

Sr. No	Name of Practical	Hours
1.	Importing and exporting data in python	02
2.	Python packages for data analytics	02
3.	Preprocessing of data (Data formatting, data normalization, missing values	02
	etc.) in python	
4.	Analysis of variance and correlation	02
5.	Mathematical computing using NumPy	02
6.	Data manipulation with pandas	02
7.	Data visualization with python (matplotlib, seaborn etc.)	02
8.	Model building using Scikit-Learn library	02
9.	Linear Regression	02
10.	Association Rule Analysis	04
11.	Data Visualization Using Tableau	04
12.	Case Study	04

Text Book(s):

Title	Author/s	Publication
Data Mining and Business Analytics with R	Johannes Ledolter	Wiley

Reference Book(s):

Title	Author/s	Publication
Intelligent Data Analysis	Michael Berthold, David J. Hand	Springer, 2007
Mining of Massive Datasets	Anand Rajaraman, Jeffrey David Ullman	Cambridge University
		Press

Web Material Link(s):

- <u>https://www.coursera.org/learn/data-analytics-business</u>
- <u>https://nptel.ac.in/courses/110106072/</u>

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test consists of 15 marks during End Semester Exam.
- Viva/ Oral performance consists of 15 marks during End Semester Exam.

Course Outcome(s):

- optimize business decisions and create competitive advantage with data analytics.
- handle large scale analytics projects from various domains.
- build a complete business data analytics solution.